
PCR Basics and Applications

Prof. Dr. Mohammed S. El-Awady

Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University

Genetic Materials

History of Genes and Related Techniques

1865: Hereditary Transmission, Mendel

1869: DNA isolated, Miescher

1879: Mitosis, Flemming

1909: Gene, Johannsen

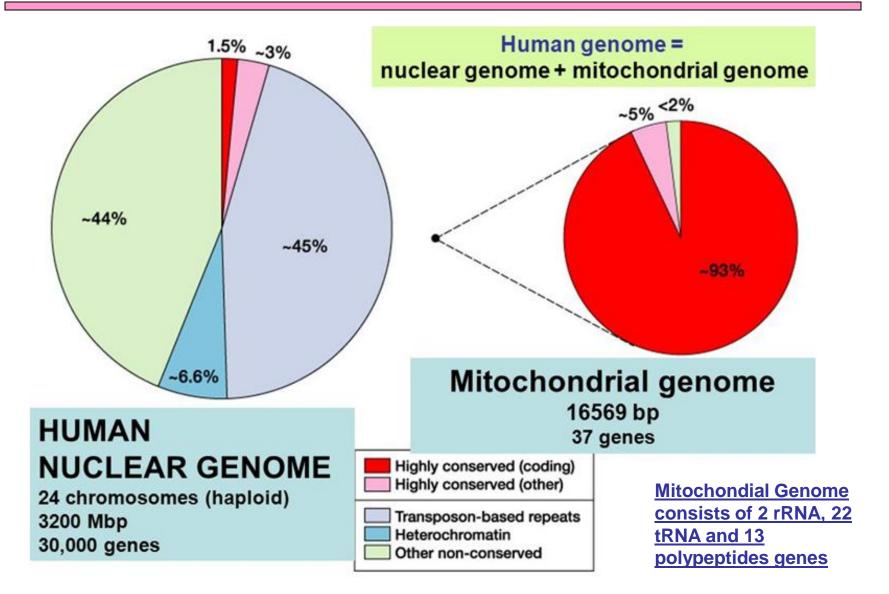
1953: Double DNA Helix, Watson and Crick

1955: Human Chromosomes, Tjio

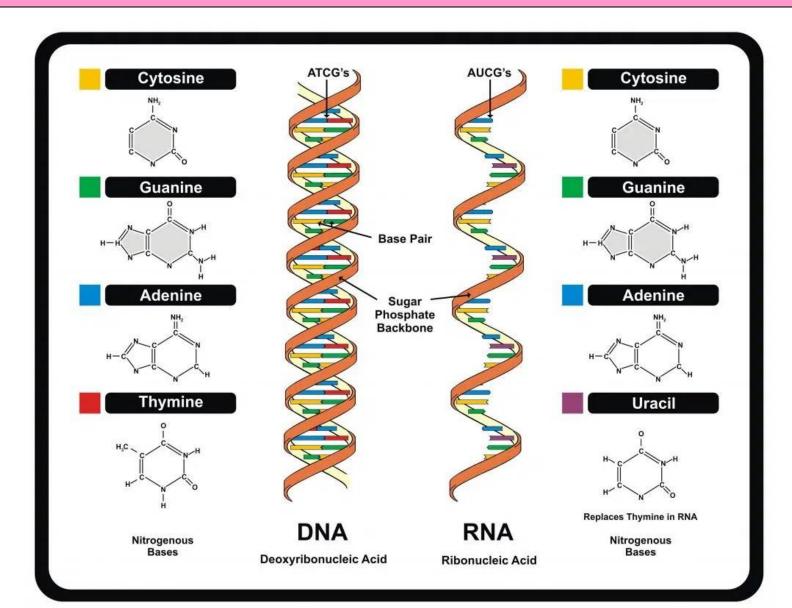
1966: Genetic Code

1977: Sanger Sequencing

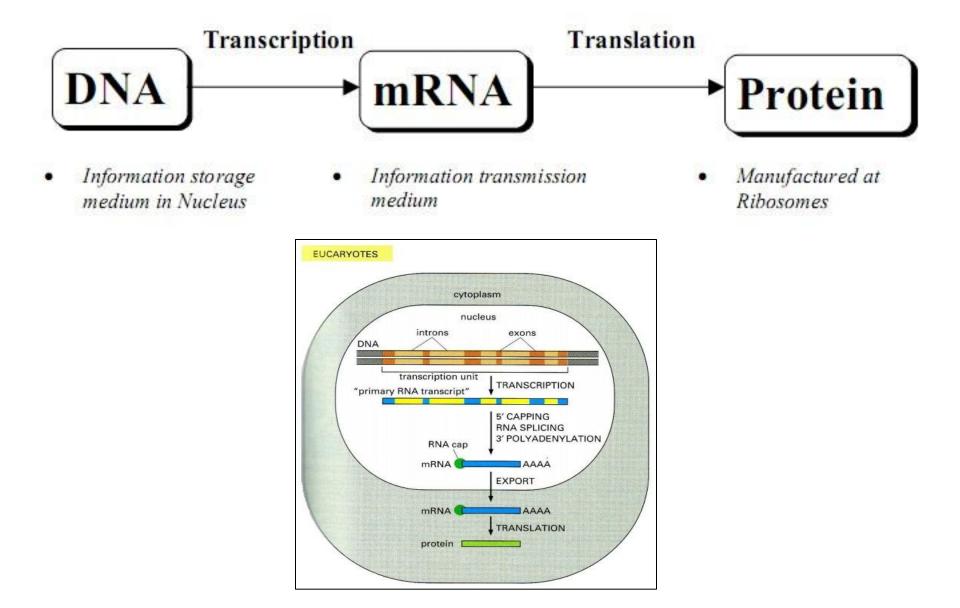
1980: First Genome Sequenced

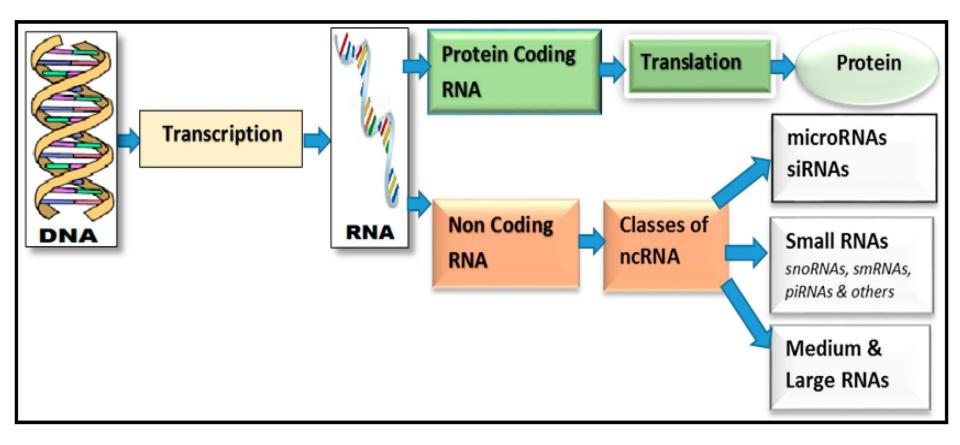

<u>1983: PCR</u>

1992: Digital PCR

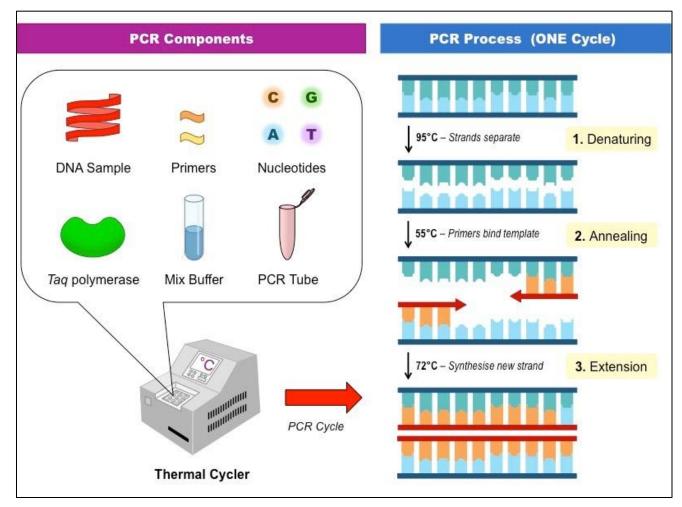

1995: Microarray

2005: Next Generation Sequencing


> Human Genome


DNA vs RNA

>DNA, RNA and Protein



➢ RNAs

Polymerase Chain Reaction (PCR)

It's a means of selectively amplifying a particular segment of DNA. i.e. <u>It is a molecular photocopier of DNA</u>. Invented by Kary Mullis in 1983 (get Noble Prize in 1993).

Polymerase Chain Reaction (PCR)

Requirements:

- Template DNA,
- > Primers
- Reaction buffer (Tris, ammonium ions (and/or potassium ions), magnesium ions, bovine serum albumin),
- > Nucleotides (dNTPs),
- DNA polymerase (usually Taq) and
- PCR Controls
- > a thermocycler.

PCR Cycles:

- **30–35 cycles each comprising:**
- denaturation (95°C), 30 sec.
- annealing (55-60°C), 30 sec.
- extension (72°C), time depends on product size.

>PCR template (starting material)

PCR template is DNA. If RNA is the starting material, it must be converted to cDNA by a reverse transcriptase and this is called <u>RT-PCR</u>. RT-PCR could be One-Step OR two-Step (cDNA step separated)

Steps:

- <u>A- Storage:</u> Samples (5-10 mg tissue, 10 µl to 1 ml if fluid) must be used freshly or rapidly stored either in RNA Later OR flash frozen in liquid nitrogen then stored at -70.
- **B- Cell disruption:** by homogenization, sonication or vigorous vortexing with or without enzymes (Ex. Lysozyme) and detergents.

<u>C- Removal of proteins by digestion with proteinase K.</u>

D- Nucleic acids (DNA/RNA) extraction:

- 1- Organic (Ex. Phenol) extraction (Ex. Trizol reagent).
- 2- Column-based procedures (binding to anion exchange or silica glass-fiber filters in the presence of chaotropic salts (Ex. guanidine isothiocyanate or phosphate).
- 3- Salting out.

>PCR template (starting material)

E- DNA recovery: by precipitation using ethanol or isopropanol OR elution.

F- Sample Purification:

Ex. DNAse treatment for RNA extract to avoid contaminant DNA.

G- Check Sample Purity, integrity and quantify:

- 1- A260/A280 ratio (1.8-2 for pure DNA/RNA)
- 2- Formaldehyde agarose gel electrophoresis (for RNA).
- **3- Quantification by measuring A260.**

H- Purified DNA/RNA storage:

Purified RNA may be stored at -20°C or -70°C in water for 1 year. Purified DNA may be stored at -20°C or -70°C in TE buffer for 1 year.

I- If RT-PCR:

<u>cDNA syntheis</u> using dNTPs, RNase inhibitor, Reverse Transcriptase, and primer (random or anchored poly dT).

>PCR Primers Guidelines

- Primers should be ~20 (18-24) bases long.
- > The G/C content should be 40-60%.
- The Tm of all primer pairs should be similar
- Optimal annealing temperature ~ 5°C below the calculated Tm
- The primers must not base pair with each other or with themselves or form hairpins.
- Primers must avoid repetitive DNA
- > Tm calculation: $2^{\circ}C \times (A+T) + 4^{\circ}C \times (G+C)$
- Ensure primer sequence is unique for the template sequence (BLAST)
- Use a concentration of 0.1–1.0 μM of each primer. For many applications, a primer concentration of 0.2 μM will be sufficient
- Primers differ according to the type of PCR Ex., qPCR and multiplex PCR

>PCR Enzymes

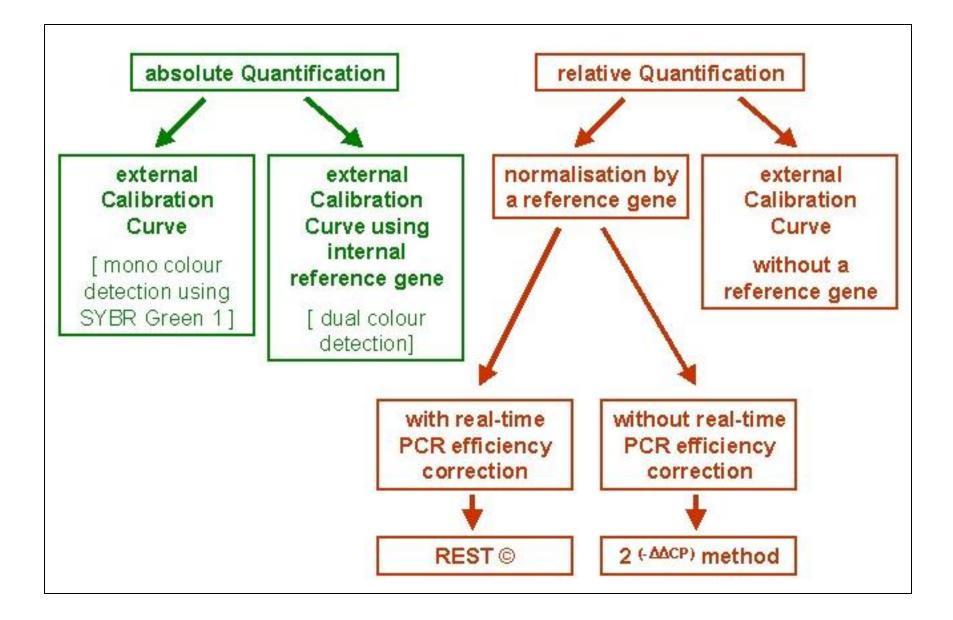
- Taq DNA polymerase, isolated from the eubacterium Thermus aquaticus, is the most commonly used enzyme for standard end-point PCR. However, as this enzyme is active at room temperature, it is necessary to perform reaction setup on ice to avoid nonspecific amplification.
- Hot-start polymerase Taq DNA polymerase activity can be inhibited at lower temperatures with chemical modifiers leading to complete inactivation of the polymerase until the covalent bonds are broken during the initial heat activation step.
- High-fidelity polymerase (Proof-reading) high-fidelity PCR enzymes generally provide a 3' to 5' exonuclease activity for removing incorrectly incorporated bases. High-fidelity PCR enzymes are ideally suited to applications requiring a low error rate, such as cloning, sequencing, and site-directed mutagenesis. (Error 1 in 10⁵ / 10⁶ vs 1 10³ / 10⁴ for Taq polymerase)

>PCR Controls

- NTC: No template control
- Reference or internal or housekeeping control (Ex. B-actin, GAPDH, 18S ribosomal RNA,)
- Positive control

Note:

<u>Conventional PCR</u> reaction is an end-point. After the 35 cycles, the PCR products are transferred to and isolated using <u>gel electrophoresis</u> (with ethidium bromide or SYBR green or EVA green) and visualized (with UV or Flourescense) and compared to a DNA Ladder for Size.


≻Real-time PCR

- <u>Real-time PCR (also known as quantitative or <u>qPCR</u>) allows accurate quantification of starting amounts of DNA, cDNA, and RNA targets.</u>
- Fluorescence is measured during each cycle, which greatly increases the dynamic range of the reaction, since the amount of fluorescence is proportional to the amount of PCR product.

PCR products can be detected using:

- Fluorescent dyes (Ex. SYBR Green or Eva Green) that bind to doublestranded DNA, less specific as they bind to any double stranded DNA OR
- Fluorescently labeled sequence-specific probes (Ex., TaqMan probes, FRET Probes,.).... More specific but more expensive

>Quantification by PCR

>Gene Information/sequence

NIH Nation	tional Library of Med	cine ation		Log in
Gene	Gene v iNOS		Search	
	Advanced			Help
	and the second	Gene		
			ge of species. A record may include nomenclature, Reference iations, phenotypes, and links to genome-, phenotype-, and	
Using Gene		Gene Tools	Other Resources	
Gene Quick Start		Submit GeneRIFs	OMIM	
FAQ		Submit Correction	RefSeq	
Download/FTP		<u>Statistics</u>	RefSeqGene	
RefSeq Mailing List		BLAST	Protein Clusters	
<u>Gene News</u> <u></u>		Genome Workbench		
Factsheet		Splign		

Note: Bioinformatics helps identify genes within a long DNA sequence. This technique locates a gene simply by analyzing sequence data (by similarity or prediction) using a computer (in silico).

>Gene Information/sequence

NIH Nati	onal Libr al Center for Bi	ary of Me	dicine ^{rmation}				Log	in
Gene	Gene	✓ iNOS Create RSS	Save search Advanced				Search	Help
Gene sources Genomic Mitochondria Organelles		See Inos myo	page - Sort by Relevance - -inositol-1-phosphate synth:			Send to: ◄	Hide sidet	bar >>
Plasmids Categories Alternatively spliced Annotated genes Non-coding Protein-coding Pseudogene		Search result Items: 1 to 20 o	s		<< First < Prev Page 1 of 130 Ne	xt > Last >>	Results by taxon Top Organisms [Tree] Mus musculus (252) Homo sapiens (185) Rattus norvegicus (129) Drosophila melanogaster (72) Caenorhabditis elegans (23) All other taxa (1926)	
Sequence content CCDS Ensembl RefSeq RefSeaGene		Name/Gene ID	myo-inositol-1-phosphate synthase [<i>Drosophila</i> <i>melanogaster</i> (fruit fly)]	Location Chromosome 2R, NT_033778.4 (74549227458874, complement)	Aliases Dmel_CG11143, CG11143, Dmel\CG11143, INOS, bs36h12.y1	MIM	Find related data Database: Select	
Status ✔ Current	clear	□ <u>Nos2</u> ID: 18126 □ <u>NOS2</u>	nitric oxide synthase 2, inducible [<i>Mus musculus</i> (house mouse)] nitric oxide synthase 2	Chromosome 11, NC_000077.7 (7881161378851052) Chromosome 17, NC_000017.11	MAC-NOS, NOS-II, Nos-2a, i-NOS, iNOS Nos2 HEP-NOS, INOS, NOSA, NOS2	163730	Find items	
<u>Clear all</u> <u>Show additional filters</u>		D: 4843	nitric oxide synthase 2 [Homo sapiens (human)] nitric oxide synthase 2 [Rattus norvegicus (Norway rat)]	(2775676627800529, complement) Chromosome 10, NC_051345.1 (6381530863851208)	Nos2a, iNos	103730	Search details iNOS[All Fields] AND alive[prop]	
			Nitric oxide synthase	Chromosome 2L, NT_033779.5	Dmel_CG6713, CG6713, DNOS, DNOS1_Dmol/CC6713, NOS_NOS1			11.

> mRNA information

NIH National Library of Medi	cine ^{Ition}	Log in
Nucleotide Nucleotide ViNOS Advanced		Search Help
ACCCAGCACACATTATT TGTAGCTTACCACCACCGC GGTTTGCTC	Nucleotide The Nucleotide database is a collection of sequences from PDB. Genome, gene and transcript sequence data provid	
Using Nucleotide	Nucleotide Tools	Other Resources
Quick Start Guide	Submit to GenBank	GenBank Home
FAQ	LinkOut	RefSeq Home
Help	<u>E-Utilities</u>	Gene Home
GenBank FTP	BLAST	SRAHome
RefSeq FTP	Batch Entrez	INSDC

> mRNA information

<< First < Prev Page 1

of 14 Next > Last >>

Items: 1 to 20 of 273

- Rattus norvegicus nitric oxide synthase (NOS2) mRNA, complete cds
- 1. 3,444 bp linear mRNA

Accession: U26686.1 GI: 886072

Protein PubMed Taxonomy

GenBank FASTA Graphics

- Rattus norvegicus nitric oxide synthase 2 (Nos2), mRNA
- 3,793 bp linear mRNA Accession: NM_012611.3 Gl: 148298710 Protein PubMed Taxonomy

GenBank FASTA Graphics

- Scenedesmus sp. PABB004 contig_2, whole genome shotgun sequence
- 3. 2,759,038 bp linear DNA

Accession: JABVCE010000002.1 GI: 1918025517
<u>Assembly BioProject BioSample Protein Taxonomy</u>
<u>GenBank FASTA Graphics</u>

Primer Design Using PubMed BLAST

NIH	National Library of Medicine National Center for Biotechnology Information		Log in
Nucleotide	e Nucleotide v Advanced		Search Help
GenBank∓		Send to: 🗸	Change region shown
NCBI Referen	norvegicus nitric oxide synthase 2 (Nos nce Sequence: NM_012611.3	Customize view	
<u>FASTA</u> <u>Gra</u> j <u>Go to:</u> ⊙	<u>phics</u>		Analyze this sequence
LOCUS DEFINITION	NM_012611 3793 bp mRNA linear Rattus norvegicus nitric oxide synthase 2 (Nos2), u	Design and test primers for this sequence using Primer-	Pick Primers
ACCESSION	NM_012611 XM_220732	BLAST.	Highlight Sequence Features
VERSION KEYWORDS	NM_012611.3 RefSeq; RefSeq Select.		Find in this Sequence
SOURCE	Rattus norvegicus (Norway rat)		Show in Genome Data Viewer
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata		
	Mammalia; Eutheria; Euarchontoglires; Glires; Roder Muroidea; Muridae; Murinae; Rattus.	ntia; Myomorpha;	Articles about the Nos2 gene
REFERENCE AUTHORS	1 (bases 1 to 3793) He A, Guo Y, Xu Z, Yan J, Xie L, Li Y, Lv D and Luc		Post-translational modification of manganese superoxide dis [J Heart Lung Transplant. 2005]
TITLE	Hypoglycaemia aggravates impaired endothelial-depen vasodilation in diabetes by suppressing endothelia synthase activity and stimulating inducible nitric	Monomeric inducible nitric oxide synthase localizes to pe [Proc Natl Acad Sci U S A. 2005]	
JOURNAL PUBMED	expression Microvasc Res 146, 104468 (2023) 36513147		Increased rat alveolar macrophage expression of functional iNOS induced I [Nitric Oxide. 2005]
REMARK	GeneRIF: Hypoglycaemia aggravates impaired endothe		See all

Primer Design Using Primer-BLAST

NIH National Library of Medicine National Center for Biotechnology Information										
Prime	r-BLAST	A tool for finding specific primers	A tool for finding specific primers							
		Finding primers specific to your PCR template (using Primer3 and	d BLAST).							
Primers for target on one template	Primers common for a g	roup of sequences								
PCR Template		Retrieve recent results Publication Tips for finding specific primers								
Enter accession, gi, or FASTA sequence (A r NM_012611.3 Or, upload FASTA file Browse.	-	Clear Range ? Clear From To Forward primer								
Primer Parameters										
Use my own forward primer (5'->3' on plus strand) Use my own reverse primer (5'->3' on minus strand) Min	Мах	Clear Clear Clear								
PCR product size 70	1000									
# of primers to return 10 Min Primer melting temperatures 57.0	Opt Max 60.0 63.0	Max T _m difference								
Exon/intron selection A refseq n	nRNA sequence as PCR template inp	It is required for options in the section 😮								
	ference									
Exon junction match Min 5' ma	tch Min 3' match Max 3' match									

Primer Design Using Primer-BLAST

- Graphical view of primer pairs

- Detailed primer reports

Primer pair 1									
	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	TCCTCAGGCTTGGGTCTTGT	Plus	20	105	124	60.77	55.00	5.00	0.00
Reverse primer	AGAAACTTCCAGGGGCAAGC	Minus	20	213	194	60.54	55.00	4.00	2.00
Product length	109								

Products on intended targets

>NM_012611.3 Rattus norvegicus nitric oxide synthase 2 (Nos2), mRNA

product length = 109 Forward primer 1 TCCTCAGGCTTGGGTCTTGT 20 Template 105 124

Reverse primer 1 AGAAACTTCCAGGGGCAAGC 20 Template 213 194

Primer Analysis Using NetPrimer

PREMIER Biosoft

Free web based tool to analyze primers

NetPrimer

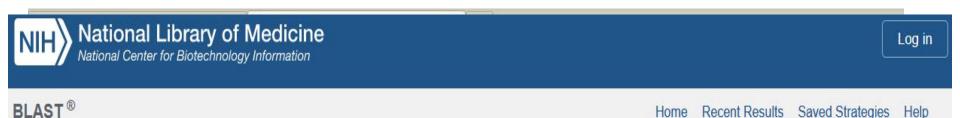
Oligo Analysis									
Name	:	Rat iNOS							
Description	:								
Sequence #1 (5' to 3')									
Length	4	20							
TCCTCAGGCTTGGGTCTTGT									
Sequence #2 (5' to 3')									
Length									
AGAAACTTCCAGGGGCAAGC									
Reaction Conditions									
Oligo Concentration				: 25	0.0	рМ			
Monovalent Ion Concentration				: 50	.0	mM			
Free Mg++ Ion Concentration				: 1.	5	mM			
Total Na[+] Equivalent		: 20	4.92	mM					
Temperature for Free Energy Calculation				: 25	.0	°C			

Primer Analysis Using NetPrimer

Analysis Results #1: TCCTCAGGCTTGGGTCTTGT

Rating	:	100.0		3' end stability	:	-6.84	kcal/mol
Molecular Wt	:	6106.04		ΔH	:	-151.7	kcal/mol
Tm	:	59.32	°C	ΔS	:	-0.39	kcal/°K/mol
GC%	:	55.0		5' end ΔG	:	-7.82	kcal/mol
GC Clamp	:	1		Self Dimer (ΔG)	:		kcal/mol
nmol/A ₂₆₀	:	5.7		Hairpin (ΔG)	:		kcal/mol
ug/A ₂₆₀	:	34.81		Repeats (# of pairs)	:		kcal/mol
ΔG	:	-34.47	kcal/mol	Run (# of bases)	:	<u>3</u>	kcal/mol

Analysis Results #2: AGAAACTTCCAGGGGCAAGC


Rating	:	91.0		3' end stability	:	-8.64	kcal/mol			
Molecular Wt	:	6160.1		ΔH	:	-163.1	kcal/mol			
Tm	:	60.82	°C	ΔS	:	-0.42	kcal/°K/mol			
GC%	:	55.0		5' end ΔG	:	-7.06	kcal/mol			
GC Clamp	:	2		Self Dimer (ΔG)	:	-4.54	kcal/mol			
nmol/A ₂₆₀	:	4.99		Hairpin (ΔG)	:	-0.44	kcal/mol			
ug/A ₂₆₀	:	30.74		Repeats (# of pairs)	:		kcal/mol			
ΔG	:	-36.62	kcal/mol	Run (# of bases)	:	<u>4</u>	kcal/mol			

Cross Dimer (ΔG) : <u>-9.64</u>

kcal/mol

Print

>BLAST

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

NE	BLAST+ 2.14.0 is here! BLASTP, BLASTX, and TBLASTN ar	re faster than before.
S	Fri, 28 Apr 2023	More BLAST news

Web BLAST

≻BLAST

					Standard Nucleotide BLAST
blastn	blastp	blastx	tblastn	tblastx	
				BLASTN pr	ograms search nucleotide databases using a nucleotide query. more
	-				
	uery Sequei			-	
		r(s), gi(s), or FA	STA sequence(5) 😯 Clear	Query subrange 🕜
TCCTCAGG	CTTGGGTCTTG	Ĩ			From
				11.	то
Or, upload	file Bro	wse No file sel	ected.	0	
Job Title					
	Ente	r a descriptive title	for your BLAST se	earch 📀	
Align tw	o or more sequ	ences 🕜			
Choose	Search Set				
Database	و 🔘	Standard databas	es (nr etc.): 🔘	rRNA/ITS datab	bases \bigcirc Genomic + transcript databases \bigcirc Betacoronavirus
	Nev	C Experiment	al databases		rimental taxonomic nt databases Info see What are taxonomic nt s?
	♦ Re	eference RNA seq	uences (refseq_	rna)	✓ 3
Organism		ttue popuogicus /	toxid:10116)		exclude Add organism
Optional		attus norvegicus (or tax id Only 2	20 top taxa will be shown ?
	Linte	a organism commo	in nume, binomial,	or tax id. Only 2	

≻BLAST

Des	scriptions	Graphic Summary	Alignments	Taxonomy										
Se	quences pro	Downloa	ad ~	S	elect	column	l s ⊻ S	how	100 🗸 🔞					
	select all 10	00 sequences selected				GenBa	<u>ank</u>	<u>Graph</u>	ics	Distance	e tree of i	results	MSA Viewer	<u>r</u>
			Description			Scientific Name	Max Score		Query Cover	E value	Per. Ident	Acc. Len	Accession	
	Rattus norvegic	us nitric oxide synthase 2 (Nos	<u>2), mRNA</u>			Rattus norvegicus	40.1	40.1	100%	0.002	100.00%	3793	<u>NM_012611.3</u>	
	PREDICTED: R	attus norvegicus NFKB inhibitor	<u>r delta (Nfkbid), transcri</u>	i <u>pt variant X3, mRNA</u>		Rattus norvegicus	30.2	30.2	75%	1.5	100.00%	2932	<u>XM_039093857.1</u>	
	PREDICTED: R	attus norvegicus NFKB inhibitor	<u>r delta (Nfkbid), transcri</u>	i <u>pt variant X2, mRNA</u>		Rattus norvegicus	30.2	30.2	75%	1.5	100.00%	2999	<u>XM_039093856.1</u>	
	Rattus norvegic	us potassium channel tetrameri	ization domain containi	<u>ng 17 (Kctd17), transc</u>	<u>ript variant 1, mRNA</u>	Rattus norvegicus	30.2	30.2	75%	1.5	100.00%	1740	<u>NM_001395732.1</u>	
	PREDICTED: R	attus norvegicus potassium cha	annel tetramerization do	omain containing 17 (K	<u>ctd17), transcript v</u>	. <u>Rattus norvegicus</u>	30.2	30.2	75%	1.5	100.00%	1536	XM_006241982.4	
	PREDICTED: R	lattus norvegicus potassium cha	annel tetramerization do	omain containing 17 (K		.Rattus norvegicus	30.2	30.2	75%	1.5	100.00%	1612	<u>XM_039078953.1</u>	

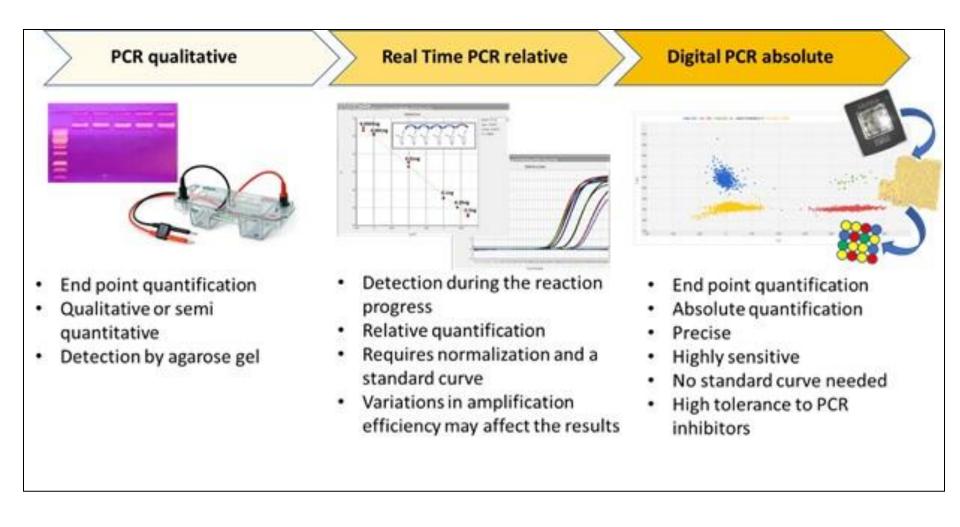
Other Useful Websites

For Primer Design and Analysis

- BatchPrimer3:
- IDT PrimerQuest:
- > <u>OligoPerfect by ThermoFisher:</u>

For Gene/mRNA/Exon-Intron/BLAST Information:

>Multiplex PCR


Multiplex PCR is a variant of real-time PCR in which more than one target sequence can be amplified by including more than one pair of primers in the same reaction.

Each primer pair for a target will have a specific fluorescent dye different than the others

Multiplex PCR has the potential to produce considerable savings of time and effort within the laboratory without compromising test utility.

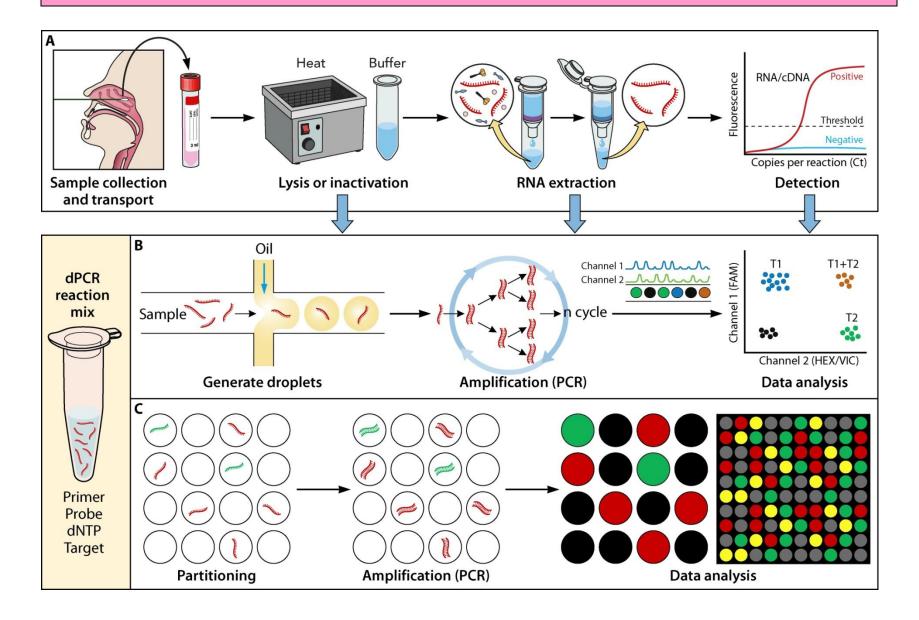
It requires special design for primers and extensive optimization of buffers, temperatures, To avoid interaction between different primers and their amplicons (products)

> Types of PCR – According to Detection Method

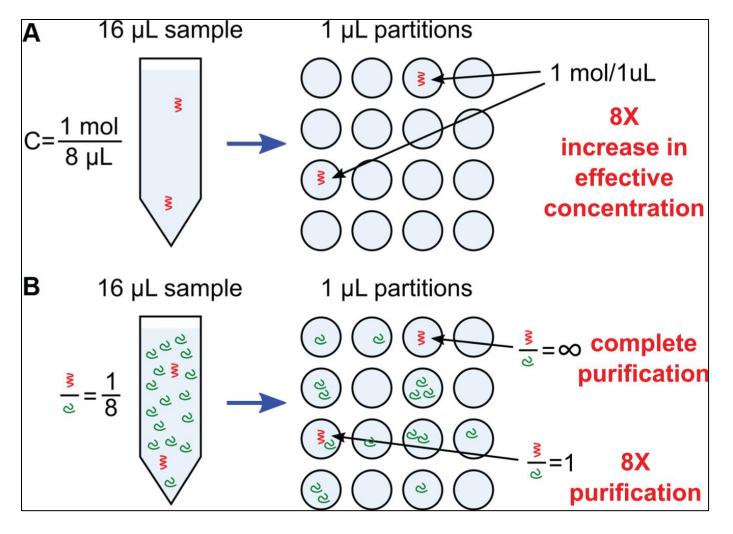
Digital PCR

Digital PCR (or 3rd generation PCR), is a new method for highly sensitive detection and absolute quantification of nucleic acids.

> Compared with traditional PCR, dPCR adds the operation of partitioning the reaction system, separating the reaction system (10 μ l) into tens of thousands of tiny independent reaction systems.


Partitioning uses oil/water partitioning into droplets (ddPCR) either through droplet generator or through a chip.

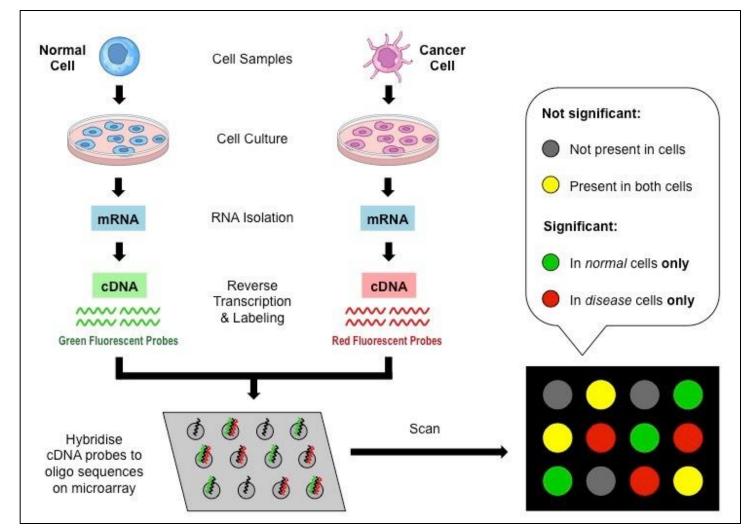
Ideally, each droplet contains 1 molecule of the nucleic acid template. After the amplification is completed, the fluorescent signals of all droplets are identified and counted, and the number of negative and positive reactions is calculated.


Finally, the concentration of the target molecule is calculated by the Poisson distribution principle, thereby realizing the absolute quantification of the target molecule.

Digital PCR does not rely on standard curve quantification and is not affected by PCR amplification efficiency, with higher sensitivity and accuracy. Thus it is used for example, rare sequence detection, copy number variation (CNV) analysis, and gene expression analysis of the rare targets.

Digital PCR

Digital PCR



Digital PCR advantages include absolute quantification, No standard curve required, detection of rare samples and low concentration

> Microarray

> A microarray is a laboratory tool used to detect the expression of thousands of genes at the same time. DNA microarrays are microscope slides that are printed with thousands of tiny spots in defined positions, with each spot containing a known DNA sequence or

>Applications of PCR

Molecular Identification

- DNA fingerprinting
- Classification of organisms
- Genotyping
- Pre-natal diagnosis
- Mutation screening
- Drug discovery
- Genetic matching
- Detection of pathogens

Bioinformatics

Sequencing

- Genomic cloning
- Human Genome
 - Project

Genetic Engineering

- Site-directed
 - mutagenesis
- Gene expression

studies

Next Generation Sequencing (NGS)

Next-Generation Sequencing is a family of techniques that has accelerated the process of detecting nucleotides. Most techniques rely on <u>Sequencing by Synthesis</u>.

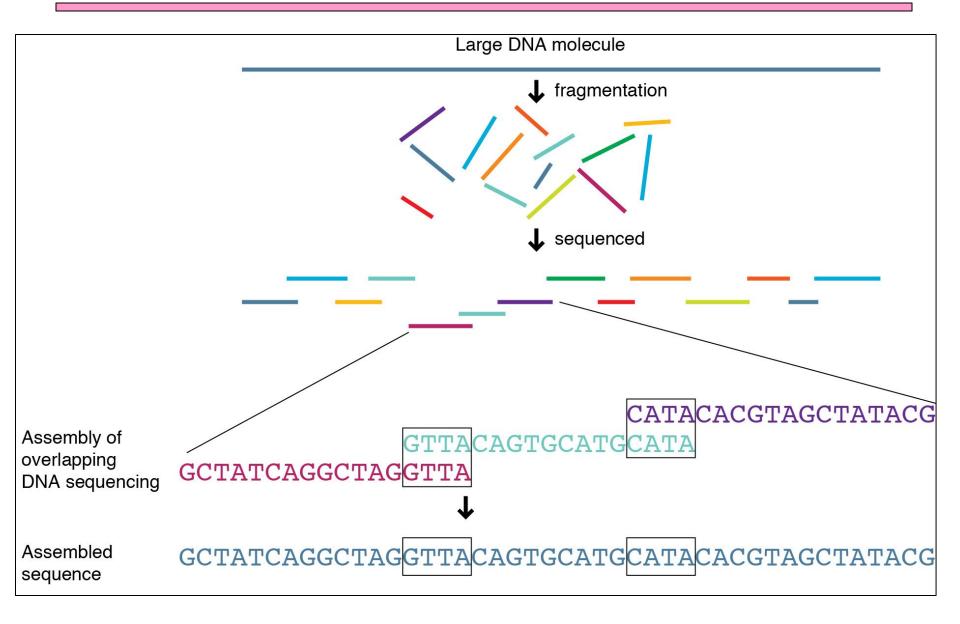
➢ In this process, the genome is excised into small 100-200 base pair fragments via mechanical or enzymatic means. The individual fragments can then be modified using RNA oligomers or adaptors (specific sequences that can be used as barcodes) via a ligation reaction.

The fragments can then be immobilized to a solid surface or allowed to remain in solution. Critically, the fragments are hybridized to complementary sequences of known regions of interest (often called baits).

The unbound DNA is removed, and the enriched DNA is eluted for NGS. Solution-based reactions often use baits with a moiety that can be used for purification.

Next Generation Sequencing (NGS)

The dominant next-generation sequencing platform is <u>Illumina</u>.
<u>Illumina</u> utilizes modified nucleotides that can only be added one at a time, preventing the addition of the next nucleotide due to a blocking moiety. The different nucleotides contain fluorophores that can be distinguished by their different spectra. Following detection, the blocking moiety and fluorophore are excised, allowing for an extension.


<u>Roche</u> utilizes the by-product of the incorporation of the nucleotide, the pyrophosphate molecule. This reacts with firefly luciferase, which subsequently emits light corresponding to the number of nucleotides incorporated.

Ion Torrent utilizes the pH change associated with nucleotide incorporation.

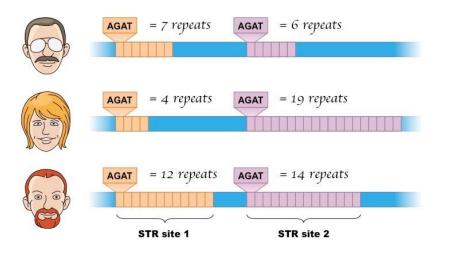
> Next Generation Sequencing

Next Generation Sequencing

DNA Fingerprinting OR Profiling

Short Tandem Repeats (STRs) are short repeated sequences (tetrameric) of DNA. The number of repeats varies between individuals, allowing for very high discrimination when used in combination. <u>Thirteen STRs are used in forensics in the US under the Combined</u> <u>DNA Index System (CODIS).</u>

> DNA Fingerprinting OR Profiling

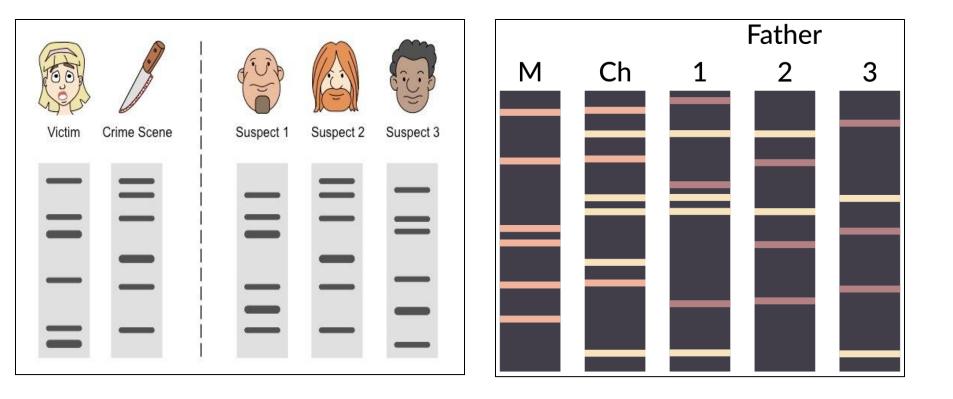

Currently allele classifications are identified by PCR-based fragment sizing by <u>capillary electrophoresis (CE)</u>.

Next-generation sequencing (NGS) adds ability to detect actual sequence context of the repeat motifs, the ability to multiplex even more markers, and the analysis of degraded samples (by purification and enrichments). The resulting STR profiles from NGS provide more information than just the allele number by analyzing the nucleotide sequence of the repeat motifs as well as nearby variations in the flanking regions.

Additionally, NGS have generated thousands of intact genomes that can function as references.

Moreover, NGS facilitate rapid, accurate detection of the entire mitochondrial genome. Autosomal DNA is limited to two copies per cell while mitochondrial DNA copy numbers can be in the thousands. It can be obtained from bones, teeth, hair shafts, feces, and other biological materials. Typically, detection of mitochondrial DNA focused on the hypervariable regions I and II. This process has been successful in achieving this in samples that were too damaged to undergo STR profiling.

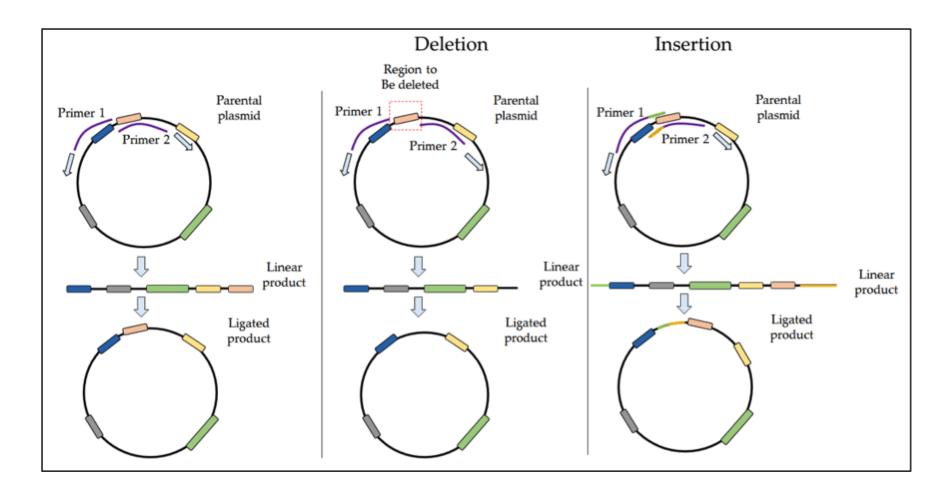
DNA Fingerprinting OR Profiling



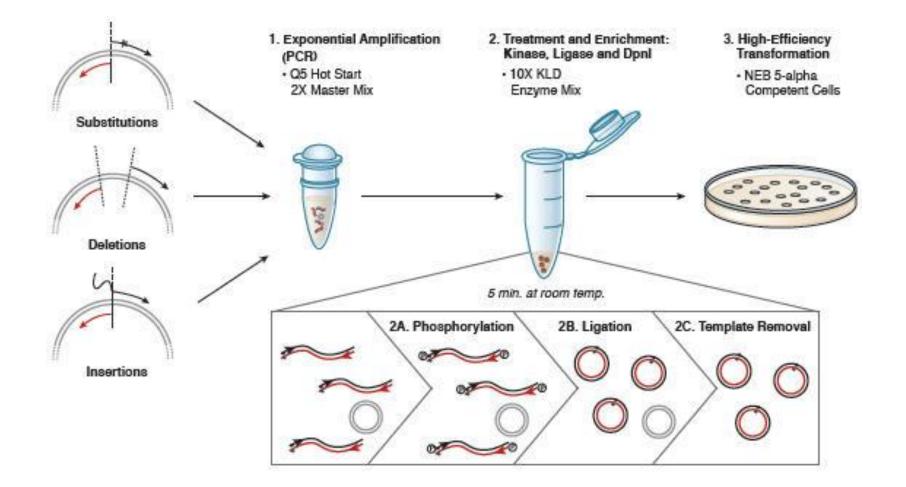
For example, at the genetic locus known as "D3S1358", This person has the genotype of "15, 18". This genotype is shared by about 8.2% of the population. By combining the frequency information for all 13 CODIS loci, Bob can calculate that the frequency of his profile would be 1 in 7.7 quadrillion Caucasians (1 in 7.7 times 10 to the 15th power!

<u>Genotype:</u> represents no of repeats in each allele

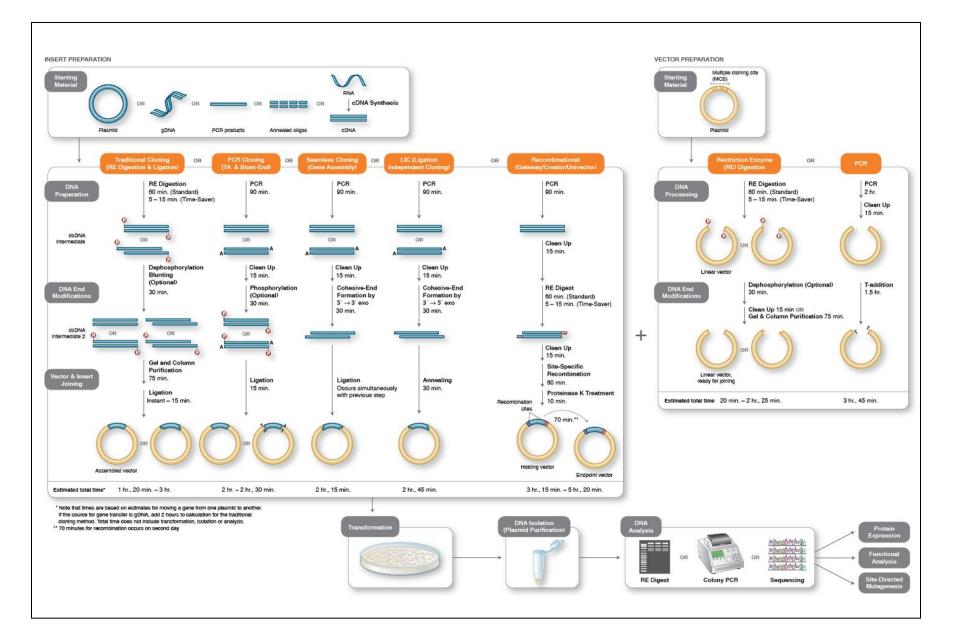
Locus	D3S1358	vWA	FGA	D8S1179	D21S11	D18S51	D5S818
Genotype	15, 18	16, 16	19, 24	12, 13	29, 31	12, 13	11, 13
Frequency	8.2%	4.4%	1.7%	9.9%	2.3%	4.3%	13%
Locus	D13S317	D7S820	D16S539	7 THO1	TPOX	CSF1PO	AMEL
Genotype	11, 11	10, 10	11, 11	9, 9.3	8,8	11, 11	XY
Frequency	1.2%	6.3%	9.5%	9.6%	3.52%	7.2%	(Male)


DNA Fingerprinting OR Profiling

Forensics


Paternity Testing

Site-Directed Mutagenesis


Ex. Synthesis of Insulin Analogues

Site-Directed Mutagenesis

Ex. Synthesis of Insulin Analogues

Cloning

