

بكالوريوس الصيدلة (فارم د – Pharm D)

Course Specification

Academic year: 2020/2021

Course name: Pharmaceutical analytical	
chemistry 3	اسم المقرر : كيمياء تحليلية صيدلية 3
Academic Level: Second	المستوى الأكاديمي :
Scientific department: Pharmaceutical	
analytical chemistry	القسم العلمي : الكيمياء التحليلية الصيدلية
Head of Department: Prof. Dr. Nahed	
Mahmoud El-Enany	رئيس القسم : / ناهد محمود العناني
Course Coordinator: Prof. Dr.	
Mohamed Elsayed Metwally	منسق المقرر : / محمد السيد متولى

University	Mansoura
Faculty	Pharmacy
Department offering the course	Pharmaceutical analytical chemistry
Department supervising the course	Pharmaceutical analytical chemistry
Program on which the course is given	Bachelor in Pharmacy Pharm D
Academic Level	Second
Date of course specification approval	

1- Basic Information : Course data :

Course Title	Pharmaceutical analytical chemistry 3
Course Code	PA213
Prerequisite	Registration
Teaching Hours: Lecture	2
Practical:	2
Total Credit Hours	3

2- Course Aims:

1- The course provides the basic concepts of quantitative chemical methods of analysis, including oxidation reduction titration and electrochemical analysis (potentiometry, conductomertry, polarography) and covers the application of these methods to pharmaceutical compounds.

2- The course also describes the basic principles of applying different analytical methods to environmental analysis such as water analysis including physical and chemical examination of water.

3- Course Learning Outcomes

Upon completing the course, the student will be able to dominate the following key elements

DOMAIN 1- FUNDAMENTAL KNOWLEDGE

(1.1.1) CI	Clarify	the	theory	and	principles	of	reduction	oxidation	titration	and
	electro	chemi	ical meth	ods of	analysis.					

(1.1.3) Combine the principles of different analytical techniques for the estimation of pharmaceutical compounds and analysis of water.

DOMAIN 2: PROFESSIONAL AND ETHICAL PRACTICE

(2.2.1)	Select and apply redox or electrochemical analytical methods to analyze pharmaceutical materials and water resources.
(2.2.3)	Demonstrate the principles of various analytical instruments used for the analysis of different raw materials and water resources.
(2.2.4)	Explain the principles of pharmaceutical calculations and their applications to pharmaceutical and environmental analysis.
(2.3.1)	Select appropriate methods for handling and disposal of materials used in pharmaceutical analysis.

DOMAIN 4: PERSONAL PRACTICE

(4.1.2)	Retrieve and analyze information to solve problems, and work individually or effectively in a team.
(4.3.2)	Practice self-learning needed to improve professional skills

4- Course Contents

Week No.	Topics	Hours
1	Introduction to redox titrations.	2
2	Nernest equation and factors affecting redox potential.	2
3	Applications of redox reactions	2
4	Introduction to water analysis, physical and chemical examination of water.	2
5	Chemical examination of water (Continued), water treatment (self-learning).	2
6	Potentiometry principles and instrumentation.	2
7	Midterm exam	
8	Potentiometric titration and its pharmaceutical applications.	2

9	Conductometry principles and instrumentation, application of conductometry	2
10	Introduction to polarography and instrumentation	2
11	Polarography applications.	1
Week No.	Practical topics	hours
1	Determination of H ₂ O ₂ , oxalic acid	2
2	Determination of lodine/lodide mixture, ascorbic acid.	2
3	Determination of Ferrous/Ferric mixture, lead acetate.	2
4	Determination of Potassium persulphate, oxygen absorbed from KMnO ₄ .	2
5	Determination of oxalic acid/acetic acid mixtur , Potentiometric titration and problems.	2
6	Conductometric titration and problems, Determination of Water acidity and alkalinity.	2
7	Midterm exam	
8	Determination of Water hardness by EDTA method, Copper in water by nesslerization.	2
9	Determination of Water hardness by Soda reagent method, lead, ammonia in water by nesslerization.	2
10	Determination of Chlorine in Water, Chloride in water Iron, zinc in water by nesslerization.	2
11	Practical Exam	2
12	Practical Exam	2

5- Teaching and Learning Methods:

5.1	Lectures using power point (PPT) presentations
5.2	Lectures using whiteboard
5.3	Practical Training / Laboratory
5.5	Tutorial / Interactive Sessions

6- Student Assessment:

a- Assessment Methods:

1-Written exam	To assess understanding, professional skills
----------------	--

2-Practical exam	To assess professional and practical skills	
3-Oral	To assess Knowledge, understanding, intellectual skills,	
	Personal skills	
Other Assessment, Quiz	To assess understanding, professional skills	

a- Assessment schedule

Assessment 1	Mid-term	7 th week
Assessment 2	Practical	11 th week
Assessment 3	Written	15 th week
Assessment 4	Oral	15 th week
Other assessment		

b- Weighing of assessments

1	Mid-term examination	15%
2	Practical examination & Semester work	25%
3	Final-term examination	50%
4	Oral examination	10%
5	Other types of assessment	
To	tal	100%

7- Facilities required for teaching and learning

-Class room	Data show- Computers.				
- Laboratory facilities	Laboratory equipment, instruments.				
- Library	Faculty library				
Others	Internet				

8- Matrix of knowledge and skills of the course

No	Course contents	Study	Outcomes Domains / K elements						
110.		Week	Domain:		Domain:				Domain:
			1		2				4
1.	Introduction to redox titrations.	1	1.1.1						
2.	Nernest equation and factors affecting redox potential.	2	1.1.1				2.2.4		4.1.2
3.	Applications of redox reactions	3		1.1.3	2.2.1		2.2.4	2.3.1	4.1.2

4.	Introduction to water analysis, physical and chemical examination of water.	4		1.1.3	2.2.1	2.2.3	2.2.4	2.3.1	
5.	Chemical examination of water (Continued), water treatment (self-learning).	5		1.1.3	2.2.1	2.2.3			4.3.2
6.	Potentiometry principles and instrumentation.	6	1.1.1			2.2.3	2.2.4		4.1.2
7.	Potentiometric titration and its pharmaceutical applications.	7	1.1.1	1.1.3	2.2.1		2.2.4	2.3.1	4.1.2
8.	Conductometry principles and instrumentation, application of Conductometry	8	1.1.1	1.1.3	2.2.1	2.2.3	2.2.4		4.1.2
9.	Introduction to polarography and instrumentation	9	1.1.1			2.2.3	2.2.4	2.3.1	4.1.2
10.	Polarography applications.	10		1.1.3	2.2.1				

9- List of References

No	Reference	Туре		
1.	Lectures notes, prepared by Staff Members of the Department	Course notes		
2.	Practical notes, prepared by Staff Members of the Department	Course notes		
3.	Principles of Instrummetal Analysis, Skoog, D. A. Holler, F. J. and Crouch, S.R. 6th ed., Thomson Belmont, USA(2007)	Essential Book		
4.	Pharmaceutical Analytical Chemistry Quantitative Analysis, Amer, M.M. Faculty of Pharmacy, Cairo University	Essential Book		
5.	Fundamentals of Analytical Chemistry, Douglas A.; Skoog; Donald M., West, F. James Holler Stanely, R.Crouch Thomson, Australia, 9 th Edition (2013).			
6.	Analytical Chemistry, Gary D. Christian, 6th ed. John Wiely and Sons, New York (2004)	Essential Book		
7.	Quantitative Chemical Analysis, Daniel C .Books Harris, 8th ed., W.H. Freeman and Company New York (2011)	Essential Book		
8.	Vogel, s Textbook of Quanitative Chemical Analysis, J. Mendham, M.A, MSc, C. Chem, M. RSC, 6th ed., India (2004)	Supplementary Textbooks		
9.	Anual of methods of analysis of foods(water) food safety and standards authority of india ministry of health and family welfare government of India New Delhi 2016	Web		
10.	Techniques of Water-Resources Investigations of the United States Geological Survey.	Web		

Course Coordinator	Prof. Dr. Mohamed Elsayed Metwally				
Head of Department	Prof. Dr. Nahed Mahmoud El-Enany				

Date: / / 2020